Compactness and distance to spaces of continuous functions

B. Cascales

Universidad de Murcia

Palermo, Italy. June 9 - 16, 2007

The papers

- B. Cascales, W. Marciszesky, and M. Raja, *Distance to spaces of continuous functions*, Topology Appl. 153 (2006), 2303–2319.
- C. Angosto and B. Cascales, *The quantitative difference between countable compactness and compactness*, Submitted, 2006.
- C. Angosto, B. Cascales and I. Namioka, *Distances to spaces of Baire one functions*, Submitted, 2007.

1 The starting point...our goals

B. Cascales Compactness+Distances

・ロン ・部 ・ ・ ヨ ・ ・ ヨ ・

1 The starting point...our goals

2 The results

- C(K) spaces: a taste for simple things
- Applications to Banach spaces
- Results for C(X) and $B_1(X)$ spaces

1 The starting point...our goals

2 The results

- C(K) spaces: a taste for simple things
- Applications to Banach spaces
- Results for C(X) and $B_1(X)$ spaces

3 References

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler. *A quantitative version of Krein's Theorem.*. Rev. Mat. Iberoamericana **21** (2005), no. 1, 237–248..
- A. S. Granero.
 An extension of Krein-Šmulian theorem.
 Rev. Mat. Iberoamericana 22 (2005), no. 1, 93–110.
- A. S. Granero, P. Hájek, and V. Montesinos Santalucía. *Convexity and w*-compactness in Banach spaces.* Math. Ann., 2005.

• M. Fabian, P. Hájek, V. Montesinos, and V. Zizler. A guantitative version of Krein's Theorem. Rev. Main result • A. S. (Let *E* be a Banach space and let $H \subset E$ be a bounded An ext subset of F. Then Rev. N $\widehat{d}(\overline{co(H)}, E) \leq 2\widehat{d}(\overline{H}, E),$ • A. S. (Conve Math.

< ∃⇒

• M. Fabian, P. Hájek, V. Montesinos, and V. Zizler. A guantitative version of Krein's Theorem. Rev Main result • A. S. (Let *E* be a Banach space and let $H \subset E$ be a bounded An ext subset of F. Then Rev. N $\widehat{d}(\overline{co(H)}, E) \leq 2\widehat{d}(\overline{H}, E),$ • A. S. (Conve₂ Math. • closures are weak*-closures taken in the bidual E**:

A⊒ ▶ ∢ ∃

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.
 A quantitative version of Krein's Theorem.
 Rev. N Main result
- A. S. C Let *E* be a Banach space and let $H \subset E$ be a bounded An ext subset of *E*. Then Rev. N $\widehat{d}(\overline{\operatorname{co}(H)}, E) < 2\widehat{d}(\overline{H}, E)$.

Conve>

Math.

closures are weak*-closures taken in the bidual E**;
 d(A, E) := sup{d(a, E) : a ∈ A} for A ⊂ E**;

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler.
 A quantitative version of Krein's Theorem.
 Rev. N Main result
- A. S. C Let *E* be a Banach space and let $H \subset E$ be a bounded An ext subset of *E*. Then Rev. N

$$\widehat{\mathsf{d}}(\overline{\mathsf{co}(H)}, E) \leq 2\widehat{\mathsf{d}}(\overline{H}, E),$$

 A. S. (*Conve*) Math.

closures are weak*-closures taken in the bidual E**;

- $\widehat{d}(A, E) := \sup\{d(a, E) : a \in A\}$ for $A \subset E^{**}$;
- $\widehat{d}(A, E) = 0$ iff $A \subset E$. Hence the inequality implies Krein's theorem (if *H* is relatively weakly compact then $\overline{co(H)}$ is weakly compact.)

- M. Fabian, P. Hájek, V. Montesinos, and V. Zizler. *A quantitative version of Krein's Theorem.*. Rev. Mat. Iberoamericana **21** (2005), no. 1, 237–248..
- A. S. Granero.
 An extension of Krein-Šmulian theorem.
 Rev. Mat. Iberoamericana 22 (2005), no. 1, 93–110.
- A. S. Granero, P. Hájek, and V. Montesinos Santalucía. *Convexity and w*-compactness in Banach spaces.* Math. Ann., 2005.

 M. Fabian, P. Hájek, V. Montesinos, and V. Zizler. *A quantitative version of Krein's Theorem.*. Rev. Mat. Iberoamericana **21** (2005), no. 1, 237–248..

 M. Fabian, P. Hájek, V. Montesinos, and V. Zizler. *A quantitative version of Krein's Theorem.*. Rev. Mat. Iberoamericana **21** (2005), no. 1, 237–248..

A⊒ ▶ ∢ ∃

...our goal

...goals

- < ≣ →

The starting point...our goals The results References

...our goal

...goals

A ■

æ

≣ >

...our goal

...goals

- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

-∢ ≣ ≯

...our goal

 $\hat{d} \leq \hat{d} \leq M\hat{d}$

...goals

- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

3

The starting point...our goals The results References

...our goal

...goals

- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

3

...our goal

...goals

- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

tools

- new reading of the *classical*;
- for *C*(*X*) we use *double limits* used by Grothendieck;

<**□** > < ⊇ >

-∢ ≣ ≯

...our goal

 $\hat{d} \leq \hat{d} \leq M\hat{d}$

...goals

- To quantify some other classical results about compactness in C(X) or $B_1(X)$.

tools

- new reading of the *classical*;
- for *C*(*X*) we use *double limits* used by Grothendieck;
- for B₁(X) we use the notions of fragmentability and σ-fragmentability of functions.

Quantitative Grothendieck charact. of τ_p -compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \leq \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, C(K)) \leq \gamma(H) \leq 2 \mathsf{ck}(H).$$

・ロト ・回ト ・ヨト

Quantitative Grothendieck charact. of τ_p -compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \leq \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^K}, \mathcal{C}(K)) \leq \gamma(H) \leq 2\,\mathsf{ck}(H).$$

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{\mathbb{R}^K}, C(K))$$

・ロト ・回ト ・ヨト

Quantitative Grothendieck charact. of τ_p -compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\operatorname{ck}(H) \leq \hat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \leq \gamma(H) \leq 2\operatorname{ck}(H).$

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{\mathbb{R}^K}, C(K))$$

 $\gamma(H) := \sup\{|\lim_{n} \lim_{m} h_m(x_n) - \lim_{m} \lim_{n} h_m(x_n)| : (h_m) \subset H, (x_n) \subset K\},$ assuming the involved limits exist.

・ロン ・回と ・ヨン ・ヨン

Quantitative Grothendieck charact. of τ_p -compactness

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\operatorname{ck}(H) \leq \hat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \leq \gamma(H) \leq 2\operatorname{ck}(H).$

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{\mathbb{R}^K}, C(K))$$

 $\gamma(H) := \sup\{|\lim_{n} \lim_{m} h_m(x_n) - \lim_{m} \lim_{n} h_m(x_n)| : (h_m) \subset H, (x_n) \subset K\},$ assuming the involved limits exist.

If H is relatively countably compact in C(K) then ck(H) = 0

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\mathsf{ck}(\mathcal{H}) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{\mathcal{H}}^{\mathbb{R}^K}, \mathcal{C}(\mathcal{K})) \stackrel{(b)}{\leq} \gamma(\mathcal{H}) \stackrel{(c)}{\leq} 2\mathsf{ck}(\mathcal{H}).$

イロン イヨン イヨン イヨン

3

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$$

(a) is obvious.

・ロト ・回ト ・ヨト ・ヨト

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$

(a) is obvious.

in γ(H) replace sequences by nets.

・ロン ・回 と ・ヨン ・ヨン

3

(*b*)

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

(b)

 $\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$

(a) is obvious.
 In γ(H) replace sequences by nets.

Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.

イロン イヨン イヨン イヨン

3

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$

(a) is obvious.

(b)

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

イロン イヨン イヨン イヨン

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$

(a) is obvious.

(b)

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

・ロト ・回ト ・ヨト ・ヨト

æ

• Take a net in $H(f_{\beta}) \rightarrow f$ in \mathbb{R}^{K} .

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$

(a) is obvious.

(b)

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

イロン 不同と 不同と 不同と

- Take a net in H (f_β) → f in ℝ^K.
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$

(a) is obvious.

(b)

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in $H(f_{\beta}) \rightarrow f$ in \mathbb{R}^{K} .
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}

We get

$$\lim_{\alpha} \lim_{\beta} f_{\beta}(x_{\alpha}) = \lim_{\alpha} f(x_{\alpha}) = z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

・ロン ・回と ・ヨン・

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{\operatorname{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$

(a) is obvious.

(b)

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in $H(f_{\beta}) \rightarrow f$ in \mathbb{R}^{K} .
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}

We get

$$\lim_{\alpha} \lim_{\beta} f_{\beta}(x_{\alpha}) = \lim_{\alpha} f(x_{\alpha}) = z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

・ロン ・回 と ・ 回 と ・ 回 と

3

• Hence $\operatorname{osc}^*(f, x) = \lim_{\alpha} |f(x_{\alpha}) - f(x)| = |z - f(x)| \le \gamma(H);$

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$

(a) is obvious.

(b)

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net (x_α) → x in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in H (f_β) → f in ℝ^K.
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}

We get

 $\lim_{\alpha} \lim_{\beta} f_{\beta}(x_{\alpha}) = \lim_{\alpha} f(x_{\alpha}) = z$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

・ロン ・聞と ・ほと ・ほと

3

- Hence $\operatorname{osc}^*(f, x) = \lim_{\alpha \to 0} |f(x_{\alpha}) f(x)| = |z f(x)| \le \gamma(H);$
- In particular osc(f,x) ≤ 2γ(H) for every x ∈ K;

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\mathsf{ck}(H).$

(a) is obvious.

(b)

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net (x_α) → x in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in H (f_β) → f in ℝ^K.
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}

We get

 $\lim_{\alpha} \lim_{\beta} f_{\beta}(x_{\alpha}) = \lim_{\alpha} f(x_{\alpha}) = z$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

(ロ) (同) (E) (E) (E)

- Hence osc^{*}(f,x) = lim_α |f(x_α) − f(x)| = |z − f(x)| ≤ γ(H);
- In particular $osc(f,x) \le 2\gamma(H)$ for every $x \in K$;
- $d(f, C(K)) = \frac{1}{2} \sup_{x \in K} \operatorname{osc}(f, x) \leq \gamma(H).$

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{\operatorname{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$

• $d(f, C(K)) = \frac{1}{2} \sup_{x \in K} \operatorname{osc}(f, x) \leq \gamma(H).$

・ロット (四) (日) (日)

3

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{\operatorname{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$

(a) is obvious.

(b)

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in H (f_β) → f in ℝ^K.
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}

We get

$$\lim_{\alpha} \lim_{\beta} f_{\beta}(x_{\alpha}) = \lim_{\alpha} f(x_{\alpha}) = z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

・ロン ・回と ・ヨン ・ヨン

- Hence osc^{*}(f,x) = lim_α |f(x_α) − f(x)| = |z − f(x)| ≤ γ(H);
- In particular $osc(f,x) \le 2\gamma(H)$ for every $x \in K$;
- $d(f, C(K)) = \frac{1}{2} \sup_{x \in K} \operatorname{osc}(f, x) \leq \gamma(H).$

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{\operatorname{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$

(a) is obvious.

(b)

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in H (f_β) → f in ℝ^K.
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}

We get

$$\lim_{\alpha} \lim_{\beta} f_{\beta}(x_{\alpha}) = \lim_{\alpha} f(x_{\alpha}) = z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

・ロン ・回と ・ヨン ・ヨン

- Hence osc^{*}(f,x) = lim_α |f(x_α) − f(x)| = |z − f(x)| ≤ γ(H);
- In particular $osc(f, x) \le 2\gamma(H)$ for every $x \in K$;
- $d(f, C(K)) = \frac{1}{2} \sup_{x \in K} \operatorname{osc}(f, x) \leq \gamma(H).$

Theorem

If K is a compact topological space and H is a uniformly bounded subset of C(K), then

 $\operatorname{ck}(H) \stackrel{(a)}{\leq} \hat{\operatorname{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K)) \stackrel{(b)}{\leq} \gamma(H) \stackrel{(c)}{\leq} 2\operatorname{ck}(H).$

(a) is obvious.

(b)

- in γ(H) replace sequences by nets.
- Pick $f \in \overline{H}^{\mathbb{R}^K}$ and fix $x \in K$.
- Take a net $(x_{\alpha}) \rightarrow x$ in K such that

$$\lim_{\alpha} |f(x_{\alpha}) - f(x)| = \inf_{U} \sup_{y \in U} |f(y) - f(x)| =: \operatorname{osc}^{*}(f, x);$$

- Take a net in H (f_β) → f in ℝ^K.
- Assume (we can!) $f(x_{\alpha}) \rightarrow z$ in \mathbb{R}

We get

$$\lim_{\alpha} \lim_{\beta} f_{\beta}(x_{\alpha}) = \lim_{\alpha} f(x_{\alpha}) = z$$

$$\lim_{\beta} \lim_{\alpha} f_{\beta}(x_{\alpha}) = \lim_{\beta} f_{\beta}(x) = f(x)$$

・ロン ・回と ・ヨン ・ヨン

- Hence osc^{*}(f,x) = lim_α |f(x_α) − f(x)| = |z − f(x)| ≤ γ(H);
- In particular $osc(f,x) \le 2\gamma(H)$ for every $x \in K$;
- $d(f, C(K)) = \frac{1}{2} \sup_{x \in K} \operatorname{osc}(f, x) \leq \gamma(H).$

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^{K} we have that

 $\gamma(H) = \gamma(\operatorname{co}(H)),$

and as a consequence we obtain for $H \subset C(K)$ that

$$\widehat{d}(\overline{\operatorname{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq 2\widehat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)).$$
 (1)

and in the general case $H \subset \mathbb{R}^{K}$

$$\widehat{d}(\overline{\operatorname{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq 5\widehat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)).$$
 (2)

・ロト ・回ト ・ヨト

∃ >

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^{K} we have that

 $\gamma(H) = \gamma(\operatorname{co}(H)),$

and as a consequence we obtain for $H \subset C(K)$ that

$$\widehat{d}(\overline{\operatorname{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq 2\widehat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)).$$
 (1)

and in the general case $H \subset \mathbb{R}^{K}$

$$\widehat{d}(\overline{\operatorname{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq 5\widehat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)).$$
 (2)

・ロト ・回ト ・ヨト

∃ >

$$\hat{\mathsf{d}}(\overline{\mathrm{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq \gamma(\mathrm{co}(H)) = \gamma(H) \leq 2\mathsf{ck}(H) \leq 2\hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K))$$

Theorem

If K is a compact topological space and H be a uniformly bounded subset and a uniformly bounded subset H of \mathbb{R}^K we have that

 $\gamma(H) = \gamma(\operatorname{co}(H)),$

and as a consequence we obtain for $H \subset C(K)$ that

$$\widehat{d}(\overline{\operatorname{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq 2\widehat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)).$$
 (1)

and in the general case $H \subset \mathbb{R}^K$

$$\hat{d}(\overline{\mathrm{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq 5\hat{d}(\overline{H}^{\mathbb{R}^{K}}, C(K)).$$
(2)

イロト イヨト イヨト イヨト

- $\hat{\mathsf{d}}(\overline{\mathrm{co}(H)}^{\mathbb{R}^{K}}), C(K)) \leq \gamma(\mathrm{co}(H)) = \gamma(H) \leq 2\mathsf{ck}(H) \leq 2\hat{\mathsf{d}}(\overline{H}^{\mathbb{R}^{K}}, C(K))$
- When H ⊂ ℝ^K, we approximate H by some set in C(K), then use (1) and 5 appears as a simple

$$5 = 2 \times 2 + 1$$
.

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

 $d(f,C(K))=d(f,\mathscr{A}^{C}(K)).$

- ∢ ≣ ▶

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

 $d(f,C(K))=d(f,\mathscr{A}^{C}(K)).$

• It is easy to check that $d(f, \mathscr{A}^{C}(K)) \ge \operatorname{osc}(f)/2.$

- 4 回 🕨 - 4 回 🕨 - 4 回 🕨

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

 $d(f,C(K))=d(f,\mathscr{A}^{C}(K)).$

- It is easy to check that $d(f, \mathscr{A}^{C}(K)) \ge \operatorname{osc}(f)/2.$
- **2** For $x \in Y$, \mathscr{U}_x family of neighb.
 - $\delta > \operatorname{osc}(f) \ge \inf_{U \in \mathscr{U}_x} \sup_{y, z \in U} (f(y) f(z))$

イロト イヨト イヨト イヨト

 $\geq \inf_{U \in \mathscr{U}_x} \sup_{y \in U} f(y) - \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z)$

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

 $d(f,C(K))=d(f,\mathscr{A}^{C}(K)).$

- It is easy to check that $d(f, \mathscr{A}^{C}(K)) \ge \operatorname{osc}(f)/2.$
- **2** For $x \in Y$, \mathscr{U}_x family of neighb.

$$\delta > \operatorname{osc}(f) \ge \inf_{U \in \mathscr{U}_x} \sup_{y, z \in U} (f(y) - f(z))$$

$$\geq \inf_{U \in \mathscr{U}_x} \sup_{y \in U} f(y) - \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z)$$

3

$$f_{2}(x) := \sup_{U \in \mathscr{U}_{x}} \inf_{z \in U} f(z) + \frac{\delta}{2}$$
$$\geq \inf_{U \in \mathscr{U}_{x}} \sup_{y \in U} -\frac{\delta}{2} =: f_{1}(x)$$

イロト イヨト イヨト イヨト

Distances to spaces of affine continuous functions

3

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

$$d(f,C(K))=d(f,\mathscr{A}^{C}(K)).$$

 f_1 u. s. concave

- 1 It is easy to check that $d(f, \mathscr{A}^{C}(K)) \ge \operatorname{osc}(f)/2.$
- **2** For $x \in Y$, \mathscr{U}_x family of neighb.
 - $\delta > \operatorname{osc}(f) \ge \inf_{U \in \mathscr{U}_x} \sup_{y, z \in U} (f(y) f(z))$

$$\geq \inf_{U \in \mathscr{U}_x} \sup_{y \in U} f(y) - \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z)$$

$$f_{2}(x) := \sup_{U \in \mathscr{U}_{x}} \inf_{z \in U} f(z) + \frac{\delta}{2}$$
$$\geq \inf_{U \in \mathscr{U}_{x}} \sup_{y \in U} - \frac{\delta}{2} =: f_{1}(x)$$

イロト イヨト イヨト イヨト

The starting point...our goals C(K) spaces: a taste for simple things Applications to Banach spaces The results References

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

$$d(f,C(K))=d(f,\mathscr{A}^{C}(K)).$$

- It is easy to check that $d(f, \mathscr{A}^{\mathcal{C}}(K)) \geq \operatorname{osc}(f)/2.$
- **2** For $x \in Y$, \mathcal{U}_x family of neighb.

$$\delta > \operatorname{osc}(f) \ge \inf_{U \in \mathscr{U}_x} \sup_{y, z \in U} (f(y) - f(z))$$

$$\geq \inf_{U \in \mathscr{U}_x} \sup_{y \in U} f(y) - \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z)$$

$$f_2(x) := \sup_{U \in \mathscr{U}_x} \inf_{z \in U} f(z) + \frac{\delta}{2}$$
$$\geq \inf_{U \in \mathscr{U}_x} \sup_{y \in U} -\frac{\delta}{2} =: f_1(x)$$

- < ∃ >

4 Squeeze *h* between f_2 and f_1 and $\|f-h\|_{\infty} < \delta/2.$ ロト・「日下・・日下

3

The starting point...our goals The results References References The results Applications to Banach spaces Results for C(X) spaces: a taste for simple things Results for C(X) and $B_1(X)$ spaces

Distances to spaces of affine continuous functions

Theorem

If K is compact convex subset of a l.c.s. and $f \in \mathscr{A}(K)$ then

$$d(f,C(K)) = d(f,\mathscr{A}^{C}(K)).$$

 f_1 u. s. concave

Corollary

Let X be a Banach space and let B_{X^*} be the closed unit ball in the dual X^* endowed with the w^{*}-topology. Let $i: X \to X^{**}$ and $j: X^{**} \to \ell_{\infty}(B_{X^*})$ be the canonical embedding. Then, for every $x^{**} \in X^{**}$ we have:

$$d(x^{**}, i(X)) = d(j(x^{**}), C(B_{X^*})).$$

イロト イヨト イヨト イヨト

Measures of weak noncompactness

Definition

Given a bounded subset H of a Banach space E we define:

$$\gamma(H) := \sup\{|\liminf_{n} \lim_{m} f_m(x_n) - \lim_{m} \lim_{n} f_m(x_n)| : (f_m) \subset B_{E^*}, (x_n) \subset H\},\$$

assuming the involved limits exist,

$$\operatorname{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{w^*}, E),$$

$$\mathsf{k}(H) := \hat{d}(\overline{H}^{w^*}, E) = \sup_{x^{**} \in \overline{H}^{w^*}} d(x^{**}, E),$$

where the w^* -closures are taken in E^{**} and the distance d is the usual inf distance for sets associated to the natural norm in E^{**} .

イロト イヨト イヨト イヨト

Theorem

For any bounded subset H of a Banach space E we have:

$$ck(H) \le k(H) \le \gamma(H) \le 2ck(H) \le 2k(H)$$
$$\gamma(H) = \gamma(co(H))$$

For any $x^{**} \in \overline{H}^{w^*}$, there is a sequence $(x_n)_n$ in H such that

$$\|x^{**}-y^{**}\|\leq \gamma(H)$$

for any cluster point y^{**} of $(x_n)_n$ in E^{**} . Furthermore, H is weakly relatively compact in E if, and only if, it is zero one (equivalently all) of the numbers $ck(H), k(H), \gamma(H)$

Theorem

For any bounded subset H of a Banach space E we have:

$$ck(H) \le k(H) \le \gamma(H) \le 2ck(H) \le 2k(H)$$
$$\gamma(H) = \gamma(co(H))$$

For any $x^{**} \in \overline{H}^{w^*}$, there is a sequence $(x_n)_n$ in H such that

$$\|x^{**}-y^{**}\|\leq \gamma(H)$$

for any cluster point y^{**} of $(x_n)_n$ in E^{**} . Furthermore, H is weakly relatively compact in E if, and only if, it is zero one (equivalently all) of the numbers $ck(H), k(H), \gamma(H)$

 $\omega(H) := \inf\{\varepsilon > 0 : H \subset K_{\varepsilon} + \varepsilon B_E \text{ and } K_{\varepsilon} \subset X \text{ is } w\text{-compact}\},\$

Theorem

For any bounded subset H of a Banach space E we have:

$$\mathsf{ck}(H) \leq \mathsf{k}(H) \leq \gamma(H) \leq 2 \, \mathsf{ck}(H) \leq 2 \, \mathsf{k}(H) \leq 2 \, \mathsf{\omega}(H)$$

$$\gamma(H) = \gamma(\operatorname{co}(H))$$
 and $\omega(H) = \omega(\operatorname{co}(H))$.

For any $x^{**} \in \overline{H}^{w^*}$, there is a sequence $(x_n)_n$ in H such that

$$\|x^{**}-y^{**}\|\leq \gamma(H)$$

for any cluster point y^{**} of $(x_n)_n$ in E^{**} . Furthermore, H is weakly relatively compact in E if, and only if, it is zero one (equivalently all) of the numbers $ck(H), k(H), \gamma(H)$ and $\omega(H)$.

 $\omega(H) := \inf\{\varepsilon > 0 : H \subset K_{\varepsilon} + \varepsilon B_E \text{ and } K_{\varepsilon} \subset X \text{ is } w\text{-compact}\},\$

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem

For any bounded subset H of a Banach space E we have:

$$\mathsf{ck}(H) \leq \mathsf{k}(H) \leq \gamma(H) \leq 2 \, \mathsf{ck}(H) \leq 2 \, \mathsf{k}(H) \leq 2 \, \mathsf{\omega}(H)$$

 $\gamma(H) = \gamma(\operatorname{co}(H))$ and $\omega(H) = \omega(\operatorname{co}(H))$.

For any $x^{**} \in \overline{H}^{w^*}$, there is a sequence $(x_n)_n$ in H such that

$$\|x^{**}-y^{**}\|\leq \gamma(H)$$

for any cluster point y^{**} of $(x_n)_n$ in E^{**} . Furthermore, H is weakly relatively compact in E if, and only if, it is zero one (equivalently all) of the numbers $ck(H), k(H), \gamma(H)$ and $\omega(H)$.

 $\omega(H) := \inf \{ \varepsilon > 0 : H \subset K_{\varepsilon} + \varepsilon B_F \text{ and } K_{\varepsilon} \subset X \text{ is } w\text{-compact} \},\$

The result above is the quantitative version of Eberlein-Smulyan and Krein-Smulyan theorems. From $k(co({\cal H}))\leq 2k({\cal H})$ straightforwardly follows Krein-smulyan theorem.

Other applications to Banach spaces

Theorem (Grothendieck)

Let K be a compact space and let H be a uniformly bounded subset of C(K). Let us define

$$\gamma_{\mathcal{K}}(H) := \sup\{|\liminf_{n} \lim_{m} f_m(x_n) - \lim_{m} \lim_{n} f_m(x_n)| : (f_m) \subset H, (x_n) \subset \mathcal{K}\},\$$

assuming the involved limits exist. Then we have

 $\gamma_{\mathcal{K}}(H) \leq \gamma(H) \leq 2\gamma_{\mathcal{K}}(H).$

・ロト ・回ト ・ヨト

Other applications to Banach spaces

Theorem (Grothendieck)

Let K be a compact space and let H be a uniformly bounded subset of C(K). Let us define

$$\gamma_{\mathcal{K}}(H) := \sup\{|\liminf_{n} \lim_{m} f_m(x_n) - \lim_{m} \lim_{n} f_m(x_n)| : (f_m) \subset H, (x_n) \subset \mathcal{K}\},\$$

assuming the involved limits exist. Then we have

$$\gamma_{\mathcal{K}}(H) \leq \gamma(H) \leq 2\gamma_{\mathcal{K}}(H).$$

Theorem (Gantmacher)

Let E and F be Banach spaces, $T: E \to F$ an operator and $T^*: F^* \to E^*$ its adjoint. Then

$$\gamma(T(B_E)) \leq \gamma(T^*(B_{F^*})) \leq 2\gamma(T(B_E)).$$

・ロト ・回ト ・ヨト

Other applications to Banach spaces

Remark: Astala and Tylli [AT90, Theorem 4]

There is separable Banach space E and a sequence $(T_n)_n$ of operators $T_n: E \to c_0$ such that

$$\omega(T_n^*(B_{\ell^1})) = 1 \quad \text{and} \quad \omega(T_n^{**}(B_E^{**})) \le w(T_n(B_E)) \le \frac{1}{n}$$

1

イロト イヨト イヨト イヨト

æ

Note that this example says, in particular, that there are no constants m, M > 0 such that for any bounded operator $T : E \to F$ we have

$$m\omega(T(B_E)) \leq \omega(T^*(B_{F^*})) \leq M\omega(T(B_E)).$$

Corollary

 γ and ω are not equivalent measures of weak noncompactness, namely there is no N > 0 such that for any Banach space and any bounded set $H \subset E$ we have

 $\omega(H) \leq N\gamma(H).$

The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (Z^X, τ_p) we define

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{Z^X}, C(X, Z)).$$

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X, τ_p) . Then, for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_n$ in H such that

$$\sup_{x \in \mathcal{X}} d(g(x), f(x)) \stackrel{(a)}{\leq} 2\operatorname{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4\operatorname{ck}(H)$$

for any cluster point g of (f_n) in Z^X .

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X, τ_p) . Then

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{d}(\overline{H}^{Z^X}, C(X, Z)) \stackrel{(b)}{\leq} 3\mathsf{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{(c)}{\leq} 5\mathsf{ck}(H).$$

イロン イヨン イヨン イヨン

The results for C(X)

If X is a topological space, (Z,d) a metric space and H a relatively compact subset of the space (Z^X, τ_p) we define

$$\mathsf{ck}(H) := \sup_{(h_n)_n \subset H} d(\bigcap_{m \in \mathbb{N}} \overline{\{h_n : n > m\}}^{Z^X}, C(X, Z)).$$

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X, τ_p) . Then, for any $f \in \overline{H}^{Z^X}$ there exists a sequence $(f_n)_n$ in H such that

$$\sup_{e \in X} d(g(x), f(x)) \stackrel{(a)}{\leq} 2\operatorname{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{(b)}{\leq} 4\operatorname{ck}(H)$$

for any cluster point g of (f_n) in Z^X .

Theorem

Let X be a countably K-determined space, (Z,d) a separable metric space and H a relatively compact subset of the space (Z^X, τ_p) . Then

$$\mathsf{ck}(H) \stackrel{(a)}{\leq} \hat{d}(\overline{H}^{Z^X}, C(X, Z)) \stackrel{(b)}{\leq} 3\mathsf{ck}(H) + 2\hat{d}(H, C(X, Z)) \stackrel{(c)}{\leq} 5\mathsf{ck}(H).$$

For the particular case ck(H) = 0 we obtain all known results about compactness in $C_p(X)$ spaces.

If X topological space, (Z, d) a metric and $f \in Z^X$ and $\varepsilon > 0$:

Definition

If X topological space, (Z, d) a metric and $f \in Z^X$. We define:

 σ -frag_c(f) := inf{ $\varepsilon > 0 : f$ is $\varepsilon - \sigma$ -fragmented by closed sets}

イロト イヨト イヨト イヨト

If X topological space, (Z, d) a metric and $f \in Z^X$ and $\varepsilon > 0$:

Definition

If X topological space, (Z, d) a metric and $f \in Z^X$. We define:

 σ -frag_c(f) := inf{ $\varepsilon > 0 : f$ is $\varepsilon - \sigma$ -fragmented by closed sets}

イロト イヨト イヨト イヨト

If X topological space, (Z, d) a metric and $f \in Z^X$ and $\varepsilon > 0$:

f is ε-fragmented if for every non empty subset F ⊂ X there exist an open subset U ⊂ X such that U ∩ F ≠ Ø and diam(f(U ∩ F)) ≤ ε;

Definition

If X topological space, (Z,d) a metric and $f \in Z^X$. We define:

 σ -frag_c(f) := inf{ $\varepsilon > 0 : f$ is $\varepsilon - \sigma$ -fragmented by closed sets}

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

If X topological space, (Z, d) a metric and $f \in Z^X$ and $\varepsilon > 0$:

- f is ε-fragmented if for every non empty subset F ⊂ X there exist an open subset U ⊂ X such that U ∩ F ≠ Ø and diam(f(U ∩ F)) ≤ ε;
- f is ε − σ-fragmented by *closed sets* if there is countable family of closed subsets (X_n)_n that covers X such that f|_{X_n} is ε-fragmented for every n ∈ N.

Definition

If X topological space, (Z, d) a metric and $f \in Z^X$. We define:

 σ -frag_c(f) := inf{ $\varepsilon > 0 : f$ is $\varepsilon - \sigma$ -fragmented by closed sets}

イロン イヨン イヨン イヨン

Quantitative version of a Rosenthal's result

Theorem

If X is a metric space, E a Banach space and $f \in E^X$ then

$$rac{1}{2}\sigma ext{-frag}_{\mathsf{c}}(f) \leq d(f, B_1(X, E)) \leq \sigma ext{-frag}_{\mathsf{c}}(f).$$

In the particular case $E = \mathbb{R}$ we precisely have

$$d(f,B_1(X)) = \frac{1}{2}\sigma\operatorname{-frag}_{\mathsf{c}}(f).$$

Theorem

Let X be a Polish space, E a Banach space and H a τ_p -relatively compact subset of $E^X.$ Then

$$\mathsf{ck}(H) \leq \hat{d}(\overline{H}^{E^{X}}, B_{1}(X, E)) \leq 2\mathsf{ck}(H).$$

In the particular case when $E = \mathbb{R}$ we have

$$\hat{d}(\overline{H}^{\mathbb{R}^X}, B_1(X)) = \operatorname{ck}(H).$$

The starting point...our goals The results References

References

<ロ> <同> <同> <同> < 同> < 同>

The starting point...our goals The results References

Katetov theorem (X normal)

▲口 → ▲圖 → ▲ 国 → ▲ 国 → □

æ

Hahn-Banach separation theorem